An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems

نویسندگان

  • Anup Vanarse
  • Adam Osseiran
  • A. M. Rassau
چکیده

The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal Spike Pattern Classification in Neuromorphic Systems

Spike-based neuromorphic electronic architectures offer an attractive solution for implementing compact efficient sensory-motor neural processing systems for robotic applications. Such systems typically comprise event-based sensors and multi-neuron chips that encode, transmit, and process signals using spikes. For robotic applications, the ability to sustain real-time interactions with the envi...

متن کامل

Implementation of Olfactory Bulb Glomerular-Layer Computations in a Digital Neurosynaptic Core

We present a biomimetic system that captures essential functional properties of the glomerular layer of the mammalian olfactory bulb, specifically including its capacity to decorrelate similar odor representations without foreknowledge of the statistical distributions of analyte features. Our system is based on a digital neuromorphic chip consisting of 256 leaky-integrate-and-fire neurons, 1024...

متن کامل

Dendritic Integration Regulation and Neuronal Arithmetic Implemented in a Proton-Coupled Neuron Transistor

Neuron is the most important building block in our brain, and information processing in individual neuron involves the transformation of input synaptic spike trains into an appropriate output spike train. Hardware implementation of neuron by individual ionic/electronic coupled device is of great importance for enhancing our understanding of the brain and solving sensory processing and complex r...

متن کامل

Self-Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors

Metal-oxide memristors have emerged as promising candidates for hardware implementation of artificial synapses - the key components of high-performance, analog neuromorphic networks - due to their excellent scaling prospects. Since some advanced cognitive tasks require spiking neuromorphic networks, which explicitly model individual neural pulses ("spikes") in biological neural systems, it is c...

متن کامل

Chemosensory Processing in a Spiking Model of the Olfactory Bulb: Chemotopic Convergence and Center Surround Inhibition

This paper presents a neuromorphic model of two olfactory signalprocessing primitives: chemotopic convergence of olfactory receptor neurons, and center on-off surround lateral inhibition in the olfactory bulb. A self-organizing model of receptor convergence onto glomeruli is used to generate a spatially organized map, an olfactory image. This map serves as input to a lattice of spiking neurons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017